数据虚拟化牵涉的是整个企业,它所带来的挑战往往是组织和文化方面的,而不是技术方面的。
面向服务领域平时谈得不够多的一个话题是数据虚拟化。也就是说,能够将来自不同数据源的数据汇入到抽象的服务层,这很方便,这与让服务或应用程序使用实时生产数据库形成了对照。这有助于减小对物理存储系统的需要,又为使用数据的所有应用程序(尤其是商业智能系统、分析系统和事务系统)提供了统一接口。Judith Davis和Robert Eve著有新书《超载传统数据集成,实现业务敏捷性》(Going Beyond Traditional Data Integration to Achieve Business Agility),文中深入浅出地探讨了为什么要使用数据虚拟化技术,如何使用这项技术。与任何服务技术的情况一样,数据虚拟化技术也牵涉整个企业的许多部门和人员,所以它所带来的挑战往往是组织和文化方面的,而不是技术方面的。
Davis和Eve概述了从事数据虚拟化工作的任何人都应该考虑的六大最佳实践:
1.将数据虚拟化方面的责任集中起来。两位作者说:“这么做的一个主要优点就是,能够迅速推动这项工作,并且着手处理更宏大的概念,比如定义通用规范和实施智能存储组件。”
2.约定和实施一种通用数据模型。“这将确保一致性、高质量的数据,让业务用户对于数据更有信心,并且提高IT工作人员的灵活性和生产力。”
3.确定一种治理方法。“这需要考虑到如何管理数据虚拟化环境。关键问题是谁负责共享的基础架构,谁负责共享的服务。”
4.对业务用户进行教育,让他们认识到数据虚拟化的优点。Davis和Eve建议:“抽出时间与业务用户进行交流,确保他们明白数据。日常多开展工作,让数据虚拟化能够为企业的其余部门所接受。”
5.注意性能调整和可扩展性。“在开发过程的早期阶段,就要调整性能、测试解决方案的可扩展性。要考虑引入大规模并行处理功能,以便处理大容量数据方面的查询性能。要兼顾这个事实:用户在专门查询和报告方面是无法预测的。”
6.分阶段实施数据虚拟化。“先对数据源进行抽象处理,然后将商业智能应用程序放到上面,最后逐步实施数据虚拟化的更高级的联合功能。”
我们一直都在努力坚持原创.......请不要一声不吭,就悄悄拿走。
我原创,你原创,我们的内容世界才会更加精彩!
【所有原创内容版权均属TechTarget,欢迎大家转发分享。但未经授权,严禁任何媒体(平面媒体、网络媒体、自媒体等)以及微信公众号复制、转载、摘编或以其他方式进行使用。】
微信公众号
TechTarget
官方微博
TechTarget中国
翻译
相关推荐
-
AI入驻数据中心:你的企业预留好位置了吗?
对AI应用程序来说,时机已经成熟。但在企业数据中心实施人工智能时会对网络、存储和计算基础设施造成障碍……
-
当GPU加速计算遇上传统数据中心……
曾经被视为游戏技术的GPU,如今已经进入企业数据中心,并促进了在这一领域机器学习、人工智能等方面的发展……
-
自作自受?究竟该选择本地还是云计算?
越来越多的技术公司和大型企业发现云计算的性价比并没有想象中那么高,同时他们已经将至少一种应用迁移回到本地运行……
-
企业数据中心:怎样制定合适的IT预算计划?
对于企业数据中心管理员来说,保持数据中心的高效和符合预期预算是项极为困难的挑战。那么如果出现了宕机或者硬件需要进行更新时又会发生什么?